Super-resolution target identification from remotely sensed images using a Hopfield neural network
نویسندگان
چکیده
Fuzzy classification techniques have been developed recently to estimate the class composition of image pixels, but their output provides no indication of how these classes are distributed spatially within the instantaneous field of view represented by the pixel. As such, while the accuracy of land cover target identification has been improved using fuzzy classification, it remains for robust techniques that provide better spatial representation of land cover to be developed. Such techniques could provide more accurate land cover metrics for determining social or environmental policy, for example. The use of a Hopfield neural network to map the spatial distribution of classes more reliably using prior information of pixel composition determined from fuzzy classification was investigated. An approach was adopted that used the output from a fuzzy classification to constrain a Hopfield neural network formulated as an energy minimization tool. The network converges to a minimum of an energy function, defined as a goal and several constraints. Extracting the spatial distribution of target class components within each pixel was, therefore, formulated as a constraint satisfaction problem with an optimal solution determined by the minimum of the energy function. This energy minimum represents a “best guess” map of the spatial distribution of class components in each pixel. The technique was applied to both synthetic and simulated Landsat TM imagery, and the resultant maps provided an accurate and improved representation of the land covers studied, with root mean square errors (RMSEs) for Landsat imagery of the order of 0.09 pixels in the new fine resolution image recorded. As such, we show how, by using a Hopfield neural network, more accurate measures of land cover targets can be obtained compared with those determined using the proportion images alone. The Hopfield neural network used in this way represents a simple, robust, and efficient technique, and results suggest that it is a useful tool for identifying land cover targets from remotely sensed imagery at the subpixel scale.
منابع مشابه
Object-Oriented Method for Automatic Extraction of Road from High Resolution Satellite Images
As the information carried in a high spatial resolution image is not represented by single pixels but by meaningful image objects, which include the association of multiple pixels and their mutual relations, the object based method has become one of the most commonly used strategies for the processing of high resolution imagery. This processing comprises two fundamental and critical steps towar...
متن کاملLing, Feng and Foody, Giles M. and Ge, Yong and Li, Xiaodong and Du, Yun (2016) An iterative interpolation deconvolution algorithm for superresolution land cover
Super-resolution mapping (SRM) is a method to produce a fine spatial resolution land cover map from coarse spatial resolution remotely sensed imagery. A popular approach for SRM is a two-step algorithm, which first increases the spatial resolution of coarse fraction images by interpolation, and then determines class labels of fine resolution pixels using the maximum a posteriori (MAP) principle...
متن کاملSuper-resolution Mapping of Landscape Objects from Coarse Spatial Resolution Imagery
The landscape patches that are fundamental to landscape ecology may be considered as objects to be extracted from remotely sensed imagery. The accuracy with which objects may be characterised varies as a function of the spatial resolution of the imagery used. In general terms, a coarsening of the spatial resolution degrades the characterization of objects, notably through an increase in the pro...
متن کاملSuper-resolution land cover pattern prediction using a Hopfield neural network
Landscape pattern represents a key variable in management and understanding of the environment, as well as driving many environmental models. Remote sensing can be used to provide information on the spatial pattern of land cover features, but analysis and classification of such imagery suffers from the problem of class mixing within pixels. Soft classification techniques can estimate the class ...
متن کاملA Deep Model for Super-resolution Enhancement from a Single Image
This study presents a method to reconstruct a high-resolution image using a deep convolution neural network. We propose a deep model, entitled Deep Block Super Resolution (DBSR), by fusing the output features of a deep convolutional network and a shallow convolutional network. In this way, our model benefits from high frequency and low frequency features extracted from deep and shallow networks...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- IEEE Trans. Geoscience and Remote Sensing
دوره 39 شماره
صفحات -
تاریخ انتشار 2001